Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. coronabert is a English model originally trained by jakelever.
Predicted Entities
Non-human, Misinformation, Prevalence, Vaccines, News, Health Policy, Immunology, Inequality, Meta-analysis, Imaging, Infection Reports, Effect on Medical Specialties, Drug Targets, Transmission, Prevention, Education, Pediatrics, Medical Devices, Clinical Reports, Therapeutics, Communication, Non-medical, Long Haul, Review, Molecular Biology, Psychology, Diagnostics, Recommendations, Risk Factors, Comment/Editorial, Surveillance, Contact Tracing, Forecasting & Modelling, Healthcare Workers, Model Systems & Tools
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_coronabert","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_coronabert","en")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_sequence_classifier_coronabert |
| Compatibility: | Spark NLP 4.3.1+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | en |
| Size: | 411.0 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/jakelever/coronabert
- https://coronacentral.ai
- https://github.com/jakelever/corona-ml
- https://github.com/jakelever/corona-ml/blob/master/stepByStep.md
- https://doi.org/10.1101/2020.12.21.423860
- https://github.com/jakelever/corona-ml/blob/master/machineLearningDetails.md
- https://colab.research.google.com/drive/1cBNgKd4o6FNWwjKXXQQsC_SaX1kOXDa4?usp=sharing
- https://colab.research.google.com/drive/1h7oJa2NDjnBEoox0D5vwXrxiCHj3B1kU?usp=sharing
- https://github.com/jakelever/corona-ml/tree/master/category_prediction
- https://github.com/jakelever/corona-ml/blob/master/category_prediction/annotated_documents.json.gz
- https://github.com/jakelever/corona-ml/blob/master/stepByStep.md