Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-han-chinese-pos-jindai is a Chinese model originally trained by ckiplab.
Predicted Entities
T6, SHI, VAL, Va, Dk, VAC, QUESTIONCATEGORY, Dj, /Na, Dba, DASHCATEGORY, Daa, Df, PERIODCATEGORY, VG, T, Q, Neqa, T3, Vf, COLONCATEGORY, VU, VI, EXCLAMATIONCATEGORY, VA, DE, Dd, R, u, Nf, N, PAUSECATEGORY, 3, Dfb, q, VHL, Nd, Dfa, D, T4, x, FW, 坐, Na, Vk, A, cr, VD, T7, VCL, V_2, Dbb, COMMACATEGORY, VF, VCl, Vh, VH, NA, PARENTHESISCATEGOR, VB, CE, b, V-2, P, Nes, EXCLANATIONCATEGORY, SEMICOLONCATEGORY, Di, Dab, VL, I, VE, Ng, ETCCATEGORY, Dh, VC, Caa, Nh, Dg, PARENTHESISCATEGORY, Dc, 籙, VK, VJ, Neu, V, Dha, Nb, Dl, T5, Nc, Cbb, X, Nha, VHC, T8, U, V_
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_han_chinese_pos_jindai","zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_han_chinese_pos_jindai","zh")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_token_classifier_base_han_chinese_pos_jindai |
| Compatibility: | Spark NLP 4.3.1+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | zh |
| Size: | 396.3 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/ckiplab/bert-base-han-chinese-pos-jindai
- https://github.com/ckiplab/han-transformers
- http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/akiwi/kiwi.sh
- http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/dkiwi/kiwi.sh
- http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/pkiwi/kiwi.sh
- http://asbc.iis.sinica.edu.tw
- https://ckip.iis.sinica.edu.tw/