Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-han-chinese-pos-zhonggu is a Chinese model originally trained by ckiplab.
Predicted Entities
T6, SHI, Dk, VAC, NB, QUESTIONCATEGORY, Dj, Dba, DASHCATEGORY, nc, ND, Daa, Df, V_2, PERIODCATEGORY, VG, T, Q, Vg, PARENTHES7ISCATEGORY, r, C, Neqa, T3, 571, Vf, COLONCATEGORY, VI, EXCLAMATIONCATEGORY, VA, DE, Dd, R, Nf, N, PAUSECATEGORY, Dfb, Nd, Dfa, D, T4, FW, Na, VD, A, VCL, T7, Da, V_2, Dbb, VF, Ne, VH, NA, DH, DJ, DFa, VB, DC, b, P, Nes, EXCLANATIONCATEGORY, Db, SEMICOLONCATEGORY, Di, Dab, VL, neu, Ve, Vc, DAb, I, VE, na, Ng, Dh, VC, Caa, Nh, Dg, PARENTHESISCATEGORY, Dc, NH, VK, VJ, 符,尚無資料, Neu, V, Nb, Dl, T5, Nc, Cbb, VHC, T8, U, COMMACATEGORY
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_han_chinese_pos_zhonggu","zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_han_chinese_pos_zhonggu","zh")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_token_classifier_base_han_chinese_pos_zhonggu |
| Compatibility: | Spark NLP 4.3.1+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | zh |
| Size: | 396.3 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/ckiplab/bert-base-han-chinese-pos-zhonggu
- https://github.com/ckiplab/han-transformers
- http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/akiwi/kiwi.sh
- http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/dkiwi/kiwi.sh
- http://lingcorpus.iis.sinica.edu.tw/cgi-bin/kiwi/pkiwi/kiwi.sh
- http://asbc.iis.sinica.edu.tw
- https://ckip.iis.sinica.edu.tw/