Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-chinese-ner is a Chinese model originally trained by ckiplab.
Predicted Entities
S-WORK_OF_ART, S-TIME, E-FAC, S-PERCENT, S-PRODUCT, E-LANGUAGE, S-NORP, S-QUANTITY, S-PERSON, E-DATE, S-LOC, S-CARDINAL, E-QUANTITY, S-GPE, S-FAC, MONEY, S-ORG, E-NORP, E-GPE, E-TIME, EVENT, DATE, CARDINAL, FAC, E-PERCENT, E-PERSON, S-ORDINAL, NORP, LOC, E-ORG, E-MONEY, S-LAW, LAW, E-LOC, S-EVENT, ORG, TIME, ORDINAL, E-WORK_OF_ART, LANGUAGE, S-MONEY, E-ORDINAL, PERCENT, E-EVENT, S-LANGUAGE, E-PRODUCT, QUANTITY, WORK_OF_ART, E-LAW, S-DATE, PRODUCT, E-CARDINAL, PERSON, GPE
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_chinese_ner","zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_chinese_ner","zh")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_token_classifier_base_chinese_ner |
| Compatibility: | Spark NLP 4.3.1+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | zh |
| Size: | 381.7 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/ckiplab/bert-base-chinese-ner
- https://github.com/ckiplab/ckip-transformers
- https://muyang.pro
- https://ckip.iis.sinica.edu.tw
- https://github.com/ckiplab/ckip-transformers
- https://github.com/ckiplab/ckip-transformers