Chinese BertForTokenClassification Cased model (from Kunologist)

Description

Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. navigation-chinese is a Chinese model originally trained by Kunologist.

Predicted Entities

IQ, X, IK, IO, IB, IM, IA, ID, DO, IH, II, IC, IG, IJ, DN, IN, IP

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_navigation_chinese","zh") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_navigation_chinese","zh")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_token_classifier_navigation_chinese
Compatibility: Spark NLP 4.3.1+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: zh
Size: 381.6 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/Kunologist/navigation-chinese