Description
This model is intended to be used for zero-shot text classification, especially in Trukish. It is fine-tuned on MNLI by using DistilBERT Base Uncased model.
DistilBertForZeroShotClassification using a ModelForSequenceClassification trained on NLI (natural language inference) tasks. Equivalent of DistilBertForSequenceClassification models, but these models don’t require a hardcoded number of potential classes, they can be chosen at runtime. It usually means it’s slower but it is much more flexible.
We used TFDistilBertForSequenceClassification to train this model and used DistilBertForZeroShotClassification annotator in Spark NLP 🚀 for prediction at scale!
Predicted Entities
How to use
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
zeroShotClassifier = DistilBertForZeroShotClassification \
.pretrained('distilbert_base_zero_shot_classifier_turkish_cased_multinli', 'en') \
.setInputCols(['token', 'document']) \
.setOutputCol('class') \
.setCaseSensitive(True) \
.setMaxSentenceLength(512) \
.setCandidateLabels(["ekonomi", "siyaset","spor"])
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
zeroShotClassifier
])
example = spark.createDataFrame([['Dolar yükselmeye devam ediyor.']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val zeroShotClassifier = DistilBertForZeroShotClassification.pretrained("distilbert_base_zero_shot_classifier_turkish_cased_multinli", "en")
.setInputCols("document", "token")
.setOutputCol("class")
.setCaseSensitive(true)
.setMaxSentenceLength(512)
.setCandidateLabels(Array("ekonomi", "siyaset","spor"))
val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, zeroShotClassifier))
val example = Seq("Dolar yükselmeye devam ediyor.").toDS.toDF("text")
val result = pipeline.fit(example).transform(example)
Model Information
Model Name: | distilbert_base_zero_shot_classifier_turkish_cased_multinli |
Compatibility: | Spark NLP 4.4.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [token, document] |
Output Labels: | [multi_class] |
Language: | tr |
Size: | 254.3 MB |
Case sensitive: | true |