Sentiment Analysis pipeline for English (analyze_sentimentdl_glove_imdb)

Description

The analyze_sentimentdl_glove_imdb is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps and recognizes entities . It performs most of the common text processing tasks on your dataframe

Predicted Entities

Download Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('analyze_sentimentdl_glove_imdb', lang = 'en')
annotations =  pipeline.fullAnnotate(""Hello from John Snow Labs ! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("analyze_sentimentdl_glove_imdb", lang = "en")
val result = pipeline.fullAnnotate("Hello from John Snow Labs ! ")(0)
import nlu
text = [""Hello from John Snow Labs ! ""]
result_df = nlu.load('en.sentiment.glove').predict(text)
result_df

Results

Results


|    | document                         | sentence                        | tokens                                         | word_embeddings              | sentence_embeddings          | sentiment   |
|---:|:---------------------------------|:--------------------------------|:-----------------------------------------------|:-----------------------------|:-----------------------------|:------------|
|  0 | ['Hello from John Snow Labs ! '] | ['Hello from John Snow Labs !'] | ['Hello', 'from', 'John', 'Snow', 'Labs', '!'] | [[0.2668800055980682,.,...]] | [[0.0771183446049690,.,...]] | ['neg']     |


{:.model-param}

Model Information

Model Name: analyze_sentimentdl_glove_imdb
Type: pipeline
Compatibility: Spark NLP 4.4.2+
License: Open Source
Edition: Official
Language: en
Size: 161.6 MB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • WordEmbeddingsModel
  • SentenceEmbeddings
  • SentimentDLModel