Explain Document Pipeline for Finnish

Description

The explain_document_md is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe

Predicted Entities

Download Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('explain_document_md', lang = 'fi')
annotations =  pipeline.fullAnnotate(""Hei John Snow Labs! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("explain_document_md", lang = "fi")
val result = pipeline.fullAnnotate("Hei John Snow Labs! ")(0)
import nlu
text = [""Hei John Snow Labs! ""]
result_df = nlu.load('fi.explain.md').predict(text)
result_df

Results

Results


|    | document                 | sentence                | token                            | lemma                            | pos                                 | embeddings                   | ner                              | entities            |
|---:|:-------------------------|:------------------------|:---------------------------------|:---------------------------------|:------------------------------------|:-----------------------------|:---------------------------------|:--------------------|
|  0 | ['Hei John Snow Labs! '] | ['Hei John Snow Labs!'] | ['Hei', 'John', 'Snow', 'Labs!'] | ['hei', 'John', 'Snow', 'Labs!'] | ['INTJ', 'PROPN', 'PROPN', 'PROPN'] | [[0.1868100017309188,.,...]] | ['O', 'B-PER', 'I-PER', 'I-PER'] | ['John Snow Labs!'] |


{:.model-param}

Model Information

Model Name: explain_document_md
Type: pipeline
Compatibility: Spark NLP 4.4.2+
License: Open Source
Edition: Official
Language: fi
Size: 467.4 MB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • LemmatizerModel
  • PerceptronModel
  • WordEmbeddingsModel
  • NerDLModel
  • NerConverter