Description
The explain_document_md is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe
Predicted Entities
How to use
from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('explain_document_md', lang = 'no')
annotations =  pipeline.fullAnnotate(""Hei fra John Snow Labs! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("explain_document_md", lang = "no")
val result = pipeline.fullAnnotate("Hei fra John Snow Labs! ")(0)
import nlu
text = [""Hei fra John Snow Labs! ""]
result_df = nlu.load('no.explain.md').predict(text)
result_df
Results
Results
|    | document                     | sentence                    | token                                   | lemma                                   | pos                                         | embeddings                   | ner                                   | entities            |
|---:|:-----------------------------|:----------------------------|:----------------------------------------|:----------------------------------------|:--------------------------------------------|:-----------------------------|:--------------------------------------|:--------------------|
|  0 | ['Hei fra John Snow Labs! '] | ['Hei fra John Snow Labs!'] | ['Hei', 'fra', 'John', 'Snow', 'Labs!'] | ['Hei', 'fra', 'John', 'Snow', 'Labs!'] | ['PROPN', 'ADP', 'PROPN', 'PROPN', 'PROPN'] | [[0.1868100017309188,.,...]] | ['O', 'O', 'B-PER', 'I-PER', 'I-PER'] | ['John Snow Labs!'] |
{:.model-param}
Model Information
| Model Name: | explain_document_md | 
| Type: | pipeline | 
| Compatibility: | Spark NLP 4.4.2+ | 
| License: | Open Source | 
| Edition: | Official | 
| Language: | no | 
| Size: | 465.3 MB | 
Included Models
- DocumentAssembler
- SentenceDetector
- TokenizerModel
- LemmatizerModel
- PerceptronModel
- WordEmbeddingsModel
- NerDLModel
- NerConverter