Description
The explain_document_md is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe
Predicted Entities
How to use
from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('explain_document_md', lang = 'fr')
annotations = pipeline.fullAnnotate(""Bonjour de John Snow Labs! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("explain_document_md", lang = "fr")
val result = pipeline.fullAnnotate("Bonjour de John Snow Labs! ")(0)
import nlu
text = [""Bonjour de John Snow Labs! ""]
result_df = nlu.load('fr.explain.md').predict(text)
result_df
Results
Results
| | document | sentence | token | lemma | pos | embeddings | ner | entities |
|---:|:--------------------------------|:-------------------------------|:-------------------------------------------|:-------------------------------------------|:-------------------------------------------|:-----------------------------|:-------------------------------------------|:-------------------------------|
| 0 | ['Bonjour de John Snow Labs! '] | ['Bonjour de John Snow Labs!'] | ['Bonjour', 'de', 'John', 'Snow', 'Labs!'] | ['Bonjour', 'de', 'John', 'Snow', 'Labs!'] | ['INTJ', 'ADP', 'PROPN', 'PROPN', 'PROPN'] | [[0.0783179998397827,.,...]] | ['I-MISC', 'O', 'I-PER', 'I-PER', 'I-PER'] | ['Bonjour', 'John Snow Labs!'] |
{:.model-param}
Model Information
Model Name: | explain_document_md |
Type: | pipeline |
Compatibility: | Spark NLP 4.4.2+ |
License: | Open Source |
Edition: | Official |
Language: | fr |
Size: | 467.6 MB |
Included Models
- DocumentAssembler
- SentenceDetector
- TokenizerModel
- LemmatizerModel
- PerceptronModel
- WordEmbeddingsModel
- NerDLModel
- NerConverter