Description
The explain_document_ml is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps and recognizes entities . It performs most of the common text processing tasks on your dataframe
Predicted Entities
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline('explain_document_ml', lang = 'en')
annotations = pipeline.fullAnnotate(""Hello from John Snow Labs ! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("explain_document_ml", lang = "en")
val result = pipeline.fullAnnotate("Hello from John Snow Labs ! ")(0)
import nlu
text = [""Hello from John Snow Labs ! ""]
result_df = nlu.load('en.explain').predict(text)
result_df
Results
Results
| | document | sentence | token | spell | lemmas | stems | pos |
|---:|:---------------------------------|:---------------------------------|:-------------------------------------------------|:------------------------------------------------|:------------------------------------------------|:-----------------------------------------------|:---------------------------------------|
| 0 | ['Hello fronm John Snwow Labs!'] | ['Hello fronm John Snwow Labs!'] | ['Hello', 'fronm', 'John', 'Snwow', 'Labs', '!'] | ['Hello', 'front', 'John', 'Snow', 'Labs', '!'] | ['Hello', 'front', 'John', 'Snow', 'Labs', '!'] | ['hello', 'front', 'john', 'snow', 'lab', '!'] | ['UH', 'NN', 'NNP', 'NNP', 'NNP', '.'] || | document | sentence | token | spell | lemmas | stems | pos |
{:.model-param}
Model Information
Model Name: | explain_document_ml |
Type: | pipeline |
Compatibility: | Spark NLP 4.4.2+ |
License: | Open Source |
Edition: | Official |
Language: | en |
Size: | 9.5 MB |
Included Models
- DocumentAssembler
- SentenceDetector
- TokenizerModel
- NorvigSweetingModel
- LemmatizerModel
- Stemmer
- PerceptronModel