Description
The recognize_entities_dl is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps and recognizes entities . It performs most of the common text processing tasks on your dataframe
Predicted Entities
How to use
from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('recognize_entities_dl', lang = 'en')
annotations = pipeline.fullAnnotate(""Hello from John Snow Labs ! "")[0]
annotations.keys()
val pipeline = new PretrainedPipeline("recognize_entities_dl", lang = "en")
val result = pipeline.fullAnnotate("Hello from John Snow Labs ! ")(0)
import nlu
text = [""Hello from John Snow Labs ! ""]
result_df = nlu.load('en.ner').predict(text)
result_df
Results
Results
| | document | sentence | token | embeddings | ner | entities |
|---:|:---------------------------------|:--------------------------------|:-----------------------------------------------|:-----------------------------|:---------------------------------------------------|:------------------------------|
| 0 | ['Hello from John Snow Labs ! '] | ['Hello from John Snow Labs !'] | ['Hello', 'from', 'John', 'Snow', 'Labs', '!'] | [[0.2668800055980682,.,...]] | ['B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O'] | ['Hello from John Snow Labs'] |
{:.model-param}
Model Information
Model Name: | recognize_entities_dl |
Type: | pipeline |
Compatibility: | Spark NLP 4.4.2+ |
License: | Open Source |
Edition: | Official |
Language: | en |
Size: | 166.7 MB |
Included Models
- DocumentAssembler
- SentenceDetector
- TokenizerModel
- WordEmbeddingsModel
- NerDLModel
- NerConverter