Arabic Bert Embeddings (Base, Trained on a quarter of the full MSA dataset)

Description

Pretrained Bert Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. bert-base-arabic-camelbert-msa-quarter is a Arabic model orginally trained by CAMeL-Lab.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = BertEmbeddings.pretrained("bert_embeddings_bert_base_arabic_camelbert_msa_quarter","ar") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["أنا أحب شرارة NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val tokenizer = new Tokenizer() 
.setInputCols(Array("document"))
.setOutputCol("token")

val embeddings = BertEmbeddings.pretrained("bert_embeddings_bert_base_arabic_camelbert_msa_quarter","ar") 
.setInputCols(Array("document", "token")) 
.setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("أنا أحب شرارة NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("ar.embed.bert_base_arabic_camelbert_msa_quarter").predict("""أنا أحب شرارة NLP""")

Model Information

Model Name: bert_embeddings_bert_base_arabic_camelbert_msa_quarter
Compatibility: Spark NLP 5.0.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [bert]
Language: ar
Size: 406.3 MB
Case sensitive: true