Description
Pretrained Legal Bert Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. bert-base-cased-pt-lenerbr is a Portuguese model orginally trained by pierreguillou.
Predicted Entities
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_bert_base_cased_pt_lenerbr","pt") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Eu amo Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")
val tokenizer = new Tokenizer() 
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("bert_embeddings_bert_base_cased_pt_lenerbr","pt") 
.setInputCols(Array("document", "token")) 
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("Eu amo Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("pt.embed.bert_base_cased_pt_lenerbr").predict("""Eu amo Spark NLP""")
Model Information
| Model Name: | bert_embeddings_bert_base_cased_pt_lenerbr | 
| Compatibility: | Spark NLP 5.0.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [sentence, token] | 
| Output Labels: | [bert] | 
| Language: | pt | 
| Size: | 405.9 MB | 
| Case sensitive: | true |