Description
Pretrained BERT Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. scibert_scivocab-finetuned-CORD19 is a English model originally trained by mrm8488.
Predicted Entities
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_scibert_scivocab_finetuned_cord19","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("bert_embeddings_scibert_scivocab_finetuned_cord19","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.scibert.cord19_scibert.finetuned").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_embeddings_scibert_scivocab_finetuned_cord19 | 
| Compatibility: | Spark NLP 5.0.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [sentence, token] | 
| Output Labels: | [embeddings] | 
| Language: | en | 
| Size: | 409.8 MB | 
| Case sensitive: | true |