Turkish Electra Embeddings (from dbmdz)

Description

Pretrained Electra Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. electra-base-turkish-mc4-uncased-generator is a Turkish model orginally trained by dbmdz.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
  
embeddings = BertEmbeddings.pretrained("electra_embeddings_electra_base_turkish_mc4_uncased_generator","tr") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings")
    
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["Spark NLP'yi seviyorum"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
      .setInputCol("text") 
      .setOutputCol("document")
 
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")

val embeddings = BertEmbeddings.pretrained("electra_embeddings_electra_base_turkish_mc4_uncased_generator","tr") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("Spark NLP'yi seviyorum").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("tr.embed.electra.uncased_base").predict("""Spark NLP'yi seviyorum""")

Model Information

Model Name: electra_embeddings_electra_base_turkish_mc4_uncased_generator
Compatibility: Spark NLP 5.0.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [embeddings]
Language: tr
Size: 130.0 MB
Case sensitive: false