Description
Pretrained Electra Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. electra-tagalog-base-cased-generator
is a Tagalog model orginally trained by jcblaise
.
Predicted Entities
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("electra_embeddings_electra_tagalog_base_cased_generator","tl") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Mahilig ako sa Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("electra_embeddings_electra_tagalog_base_cased_generator","tl")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("Mahilig ako sa Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("tl.embed.electra.cased_base").predict("""Mahilig ako sa Spark NLP""")
Model Information
Model Name: | electra_embeddings_electra_tagalog_base_cased_generator |
Compatibility: | Spark NLP 5.0.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [embeddings] |
Language: | tl |
Size: | 129.9 MB |
Case sensitive: | true |