Description
Pretrained Electra Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. koelectra-base-v3-generator is a Korean model orginally trained by monologg.
Predicted Entities
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("electra_embeddings_koelectra_base_v3_generator","ko") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["나는 Spark NLP를 좋아합니다"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = BertEmbeddings.pretrained("electra_embeddings_koelectra_base_v3_generator","ko")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("나는 Spark NLP를 좋아합니다").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | electra_embeddings_koelectra_base_v3_generator |
| Compatibility: | Spark NLP 5.0.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [sentence, token] |
| Output Labels: | [embeddings] |
| Language: | ko |
| Size: | 137.3 MB |
| Case sensitive: | true |