Description
Pretrained RoBERTa Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. bertin-base-gaussian is a Spanish model orginally trained by bertin-project.
Predicted Entities
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_bertin_base_gaussian","es") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["Me encanta chispa nlp"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_bertin_base_gaussian","es")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("Me encanta chispa nlp").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.embed.bertin_base_gaussian").predict("""Me encanta chispa nlp""")
Model Information
| Model Name: | roberta_embeddings_bertin_base_gaussian |
| Compatibility: | Spark NLP 5.0.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [sentence, token] |
| Output Labels: | [bert] |
| Language: | es |
| Size: | 231.7 MB |
| Case sensitive: | true |