English RoBERTa Embeddings Base Cased model (from mrm8488)

Description

Pretrained RoBERTa Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. RuPERTa-base-finetuned-spa-constitution is a English model originally trained by mrm8488.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_ruperta_base_finetuned_spa_constitution","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_ruperta_base_finetuned_spa_constitution","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.embed.roberta.base_finetuned").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: roberta_embeddings_ruperta_base_finetuned_spa_constitution
Compatibility: Spark NLP 5.0.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [embeddings]
Language: en
Size: 469.9 MB
Case sensitive: true