Malay ALBERT Embeddings (Large)

Description

Pretrained ALBERT Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. albert-large-bahasa-cased is a Malay model orginally trained by malay-huggingface.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = AlbertEmbeddings.pretrained("albert_embeddings_albert_large_bahasa_cased","ms") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["Saya suka Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val tokenizer = new Tokenizer() 
.setInputCols(Array("document"))
.setOutputCol("token")

val embeddings = AlbertEmbeddings.pretrained("albert_embeddings_albert_large_bahasa_cased","ms") 
.setInputCols(Array("document", "token")) 
.setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("Saya suka Spark NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("ms.embed.albert").predict("""Saya suka Spark NLP""")

Model Information

Model Name: albert_embeddings_albert_large_bahasa_cased
Compatibility: Spark NLP 5.0.2+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [bert]
Language: ms
Size: 63.6 MB
Case sensitive: false