Description
Pretrained ALBERT Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. marathi-albert
is a Marathi model orginally trained by l3cube-pune
.
Predicted Entities
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = AlbertEmbeddings.pretrained("albert_embeddings_marathi_albert","mr") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["मला स्पार्क एनएलपी आवडते"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val embeddings = AlbertEmbeddings.pretrained("albert_embeddings_marathi_albert","mr")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("मला स्पार्क एनएलपी आवडते").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("mr.embed.albert").predict("""मला स्पार्क एनएलपी आवडते""")
Model Information
Model Name: | albert_embeddings_marathi_albert |
Compatibility: | Spark NLP 5.0.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | mr |
Size: | 42.6 MB |
Case sensitive: | false |