Slovenian CamemBert Embeddings (from EMBEDDIA)

Description

Pretrained CamemBert Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. sloberta is a Slovenian model orginally trained by EMBEDDIA.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

embeddings = CamemBertEmbeddings.pretrained("camembert_embeddings_sloberta","sl") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["Obožujem Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCol("text")
      .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols(Array("document"))
    .setOutputCol("token")

val embeddings = CamemBertEmbeddings.pretrained("camembert_embeddings_sloberta","sl")
    .setInputCols(Array("document", "token"))
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("Obožujem Spark NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("sl.embed.camembert").predict("""Obožujem Spark NLP""")

Model Information

Model Name: camembert_embeddings_sloberta
Compatibility: Spark NLP 5.0.2+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [embeddings]
Language: sl
Size: 263.5 MB
Case sensitive: true