Description
Pretrained BertEmbeddings  model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.marathi_bert_scratch is a Marathi model originally trained by l3cube-pune.
How to use
document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("documents")
    
    
embeddings =BertEmbeddings.pretrained("marathi_bert_scratch","mr") \
            .setInputCols(["documents","token"]) \
            .setOutputCol("embeddings")
pipeline = Pipeline().setStages([document_assembler, embeddings])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text") 
    .setOutputCol("embeddings")
    
val embeddings = BertEmbeddings 
    .pretrained("marathi_bert_scratch", "mr")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("embeddings") 
val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | marathi_bert_scratch | 
| Compatibility: | Spark NLP 5.1.1+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [documents, token] | 
| Output Labels: | [embeddings] | 
| Language: | mr | 
| Size: | 470.3 MB | 
References
https://huggingface.co/l3cube-pune/marathi-bert-scratch