Description
Pretrained BertEmbeddings  model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.models is a English model originally trained by Dinithi.
How to use
document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("documents")
    
    
embeddings =BertEmbeddings.pretrained("models","en") \
            .setInputCols(["documents","token"]) \
            .setOutputCol("embeddings")
pipeline = Pipeline().setStages([document_assembler, embeddings])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text") 
    .setOutputCol("embeddings")
    
val embeddings = BertEmbeddings 
    .pretrained("models", "en")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("embeddings") 
val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | models | 
| Compatibility: | Spark NLP 5.1.1+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [documents, token] | 
| Output Labels: | [embeddings] | 
| Language: | en | 
| Size: | 403.3 MB | 
References
https://huggingface.co/Dinithi/models