English remote_sensing_distilbert_cased DistilBertEmbeddings from Chramer

Description

Pretrained DistilBertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.remote_sensing_distilbert_cased is a English model originally trained by Chramer.

Download Copy S3 URI

How to use



document_assembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("documents")
    
    
embeddings =DistilBertEmbeddings.pretrained("remote_sensing_distilbert_cased","en") \
            .setInputCols(["documents","token"]) \
            .setOutputCol("embeddings")

pipeline = Pipeline().setStages([document_assembler, embeddings])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)



val document_assembler = new DocumentAssembler()
    .setInputCol("text") 
    .setOutputCol("embeddings")
    
val embeddings = DistilBertEmbeddings 
    .pretrained("remote_sensing_distilbert_cased", "en")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("embeddings") 

val pipeline = new Pipeline().setStages(Array(document_assembler, embeddings))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)


Model Information

Model Name: remote_sensing_distilbert_cased
Compatibility: Spark NLP 5.1.2+
License: Open Source
Edition: Official
Input Labels: [documents, token]
Output Labels: [embeddings]
Language: en
Size: 243.7 MB

References

https://huggingface.co/Chramer/remote-sensing-distilbert-cased