Description
Pretrained BertEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bi-encoder_msmarco_bert-base_german
is a German model originally trained by PM-AI
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCols(["text"]) \
.setOutputCols("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
bert_loaded = BertEmbeddings.pretrained("bert_embeddings_bi_encoder_msmarco_base_german","de") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, tokenizer, bert_loaded])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val bert_loaded = BertEmbeddings.pretrained("bert_embeddings_bi_encoder_msmarco_base_german","de")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(true)
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, bert_loaded))
val data = Seq("I love Spark NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_embeddings_bi_encoder_msmarco_base_german |
Compatibility: | Spark NLP 5.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [bert] |
Language: | de |
Size: | 409.7 MB |
Case sensitive: | true |
References
- https://huggingface.co/PM-AI/bi-encoder_msmarco_bert-base_german
- https://github.com/UKPLab/sentence-transformers
- https://microsoft.github.io/msmarco/#ranking
- https://arxiv.org/abs/2108.13897
- https://openreview.net/forum?id=wCu6T5xFjeJ
- https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/
- https://github.com/beir-cellar/beir
- https://github.com/beir-cellar/beir/blob/main/examples/retrieval/training/train_msmarco_v3_margin_MSE.py
- https://sbert.net/datasets/msmarco-hard-negatives.jsonl.gz
- https://github.com/beir-cellar/beir/blob/main/examples/retrieval/training/train_msmarco_v3_margin_MSE.py%5D
- https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/README.md
- https://github.com/beir-cellar/beir/blob/main/examples/retrieval/training/train_msmarco_v3_margin_MSE.py
- https://arxiv.org/abs/2104.12741
- https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-similarity.html#bm25
- https://en.th-wildau.de/
- https://senseaition.com/
- https://www.linkedin.com/in/herrphilipps
- https://efre.brandenburg.de/efre/de/
- https://www.senseaition.com
- https://www.th-wildau.de