Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.sentiment_hts2_hubert_hungarian is a Hungarian model originally trained by NYTK.
How to use
document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
tokenizer = Tokenizer()\
    .setInputCols("document")\
    .setOutputCol("token")  
    
sequenceClassifier = BertForSequenceClassification.pretrained("sentiment_hts2_hubert_hungarian","hu")\
            .setInputCols(["document","token"])\
            .setOutputCol("class")
pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
val tokenizer = new Tokenizer()
    .setInputCols("document") 
    .setOutputCol("token")  
    
val sequenceClassifier = BertForSequenceClassification.pretrained("sentiment_hts2_hubert_hungarian","hu")
            .setInputCols(Array("document","token"))
            .setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | sentiment_hts2_hubert_hungarian | 
| Compatibility: | Spark NLP 5.1.4+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [documents, token] | 
| Output Labels: | [class] | 
| Language: | hu | 
| Size: | 414.7 MB | 
References
https://huggingface.co/NYTK/sentiment-hts2-hubert-hungarian