Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Arabic_poem_meter_classification
is a Arabic model originally trained by Yah216
.
Predicted Entities
المنسرح
, السلسلة
, المضارع
, موشح
, البسيط
, السريع
, الرمل
, المجتث
, المتدارك
, الطويل
, المتقارب
, الخفيف
, عامي
, المواليا
, الهزج
, الكامل
, الوافر
, شعر التفعيلة
, شعر حر
, المقتضب
, الدوبيت
, المديد
, الرجز
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_arabic_poem_meter_classification","ar") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_arabic_poem_meter_classification","ar")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_classifier_arabic_poem_meter_classification |
Compatibility: | Spark NLP 5.1.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | ar |
Size: | 506.8 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
References
- https://huggingface.co/Yah216/Arabic_poem_meter_classification