Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. autonlp-bank-transaction-classification-5521155
is a Italian model originally trained by mgrella
.
Predicted Entities
Category.PROFITS_PROFITS
, Category.TRAVELS_TRANSPORTATION_TOLLS
, Category.HEALTH_WELLNESS_WELLNESS_RELAX
, Category.TRAVELS_TRANSPORTATION_HOTELS
, Category.TAXES_SERVICES_PROFIT_DEDUCTION
, Category.SHOPPING_OTHER
, Category.HOUSING_FAMILY_VETERINARY
, Category.WAGES_PROFESSIONAL_COMPENSATION
, Category.TRAVELS_TRANSPORTATION_PARKING_URBAN_TRANSPORTS
, Category.SHOPPING_HTECH
, Category.EATING_OUT_OTHER
, Category.TRAVELS_TRANSPORTATION_OTHER
, Category.LEISURE_BOOKS
, Category.LEISURE_CINEMA
, Category.TAXES_SERVICES_BANK_FEES
, Category.TAXES_SERVICES_DEFAULT_PAYMENTS
, Category.TAXES_SERVICES_PROFESSIONAL_ACTIVITY
, Category.SHOPPING_SPORT_ARTICLES
, Category.HOUSING_FAMILY_OTHER
, Category.BILLS_SUBSCRIPTIONS_OTHER
, Category.MORTGAGES_LOANS_MORTGAGES
, Category.TRAVELS_TRANSPORTATION_TRAVELS_HOLIDAYS
, Category.LEISURE_SPORT_EVENTS
, Category.HEALTH_WELLNESS_MEDICAL_EXPENSES
, Category.BILLS_SUBSCRIPTIONS_BILLS
, Category.HEALTH_WELLNESS_AID_EXPENSES
, Category.TRAVELS_TRANSPORTATION_TAXIS
, Category.TAXES_SERVICES_MONEY_ORDERS
, Category.WAGES_PENSION
, Category.HOUSING_FAMILY_GROCERIES
, Category.CREDIT_CARDS_CREDIT_CARDS
, Category.BILLS_SUBSCRIPTIONS_INTERNET_PHONE
, Category.TRANSFERS_RENT_INCOMES
, Category.TRAVELS_TRANSPORTATION_FUEL
, Category.HOUSING_FAMILY_CHILDHOOD
, Category.OTHER_CASH
, Category.SHOPPING_ACCESSORIZE
, Category.TRAVELS_TRANSPORTATION_BUSES
, Category.EATING_OUT_COFFEE_SHOPS
, Category.EATING_OUT_TAKEAWAY_RESTAURANTS
, Category.WAGES_SALARY
, Category.HEALTH_WELLNESS_DRUGS
, Category.TRANSFERS_BANK_TRANSFERS
, Category.HOUSING_FAMILY_RENTS
, Category.TRAVELS_TRANSPORTATION_VEHICLE_MAINTENANCE
, Category.HOUSING_FAMILY_APPLIANCES
, Category.HOUSING_FAMILY_FURNITURE
, Category.LEISURE_MAGAZINES_NEWSPAPERS
, Category.BILLS_SUBSCRIPTIONS_SUBSCRIPTIONS
, Category.HOUSING_FAMILY_MAINTENANCE_RENOVATION
, Category.HOUSING_FAMILY_SERVANTS
, Category.TRANSFERS_GIFTS_DONATIONS
, Category.TRANSFERS_INVESTMENTS
, Category.LEISURE_GAMBLING
, Category.LEISURE_OTHER
, Category.TRANSFERS_REFUNDS
, Category.EATING_OUT_RESTAURANTS
, Category.TRAVELS_TRANSPORTATION_FLIGHTS
, Category.OTHER_OTHER
, Category.LEISURE_CLUASSOCIATIONS
, Category.MORTGAGES_LOANS_LOANS
, Category.TRAVELS_TRANSPORTATION_TRAINS
, Category.HEALTH_WELLNESS_OTHER
, Category.TRANSFERS_SAVINGS
, Category.TAXES_SERVICES_TAXES
, Category.LEISURE_VIDEOGAMES
, Category.TAXES_SERVICES_OTHER
, Category.HEALTH_WELLNESS_GYMS
, Category.OTHER_CHECKS
, Category.TRANSFERS_OTHER
, Category.SHOPPING_CLOTHING
, Category.LEISURE_MOVIES_MUSICS
, Category.TRAVELS_TRANSPORTATION_CAR_RENTAL
, Category.LEISURE_THEATERS_CONCERTS
, Category.SHOPPING_FOOTWEAR
, Category.HOUSING_FAMILY_INSURANCES
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_autonlp_bank_transaction_classification_5521155","it") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_autonlp_bank_transaction_classification_5521155","it")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("it.classify.bert").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_autonlp_bank_transaction_classification_5521155 |
Compatibility: | Spark NLP 5.1.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | it |
Size: | 412.0 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
References
- https://huggingface.co/mgrella/autonlp-bank-transaction-classification-5521155