Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. autonlp-cat33-624317932
is a Chinese model originally trained by kyleinincubated
.
Predicted Entities
渔业
, 采矿业
, 公用事业
, 交通运输
, 农业
, 电子制造
, 休闲服务
, 文化
, 机械装备制造
, 商业贸易
, 畜牧业
, 林业
, 轻工制造
, 教育
, 国防军工
, 食品饮料
, 化工制造
, 非银金融
, 房地产
, 传媒
, 通信
, 家用电器
, 汽车制造
, 信息技术
, 有色金属
, 互联网服务
, 银行
, 纺织服装制造
, 医药生物
, 钢铁
, 建筑业
, 电气设备
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_autonlp_cat33_624317932","zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_autonlp_cat33_624317932","zh")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_classifier_autonlp_cat33_624317932 |
Compatibility: | Spark NLP 5.1.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | zh |
Size: | 383.3 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
References
- https://huggingface.co/kyleinincubated/autonlp-cat33-624317932