Spanish BertForSequenceClassification Cased model (from finiteautomata)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. beto-sentiment-analysis is a Spanish model originally trained by finiteautomata.

Predicted Entities

POS, NEG, NEU

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_beto_sentiment_analysis","es") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_beto_sentiment_analysis","es")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.classify.beto_bert.sentiment.by_finiteautomata").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: bert_classifier_beto_sentiment_analysis
Compatibility: Spark NLP 5.1.4+
License: Open Source
Edition: Official
Input Labels: [documents, token]
Output Labels: [class]
Language: es
Size: 411.7 MB

References

References

  • https://huggingface.co/finiteautomata/beto-sentiment-analysis
  • https://github.com/pysentimiento/pysentimiento/
  • https://github.com/dccuchile/beto
  • http://tass.sepln.org/tass_data/download.php
  • https://arxiv.org/abs/2106.09462