Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Multi-Label-Classification-of-PubMed-Articles
is a English model originally trained by owaiskha9654
.
Predicted Entities
Phenomena and Processes [G]
, Diseases [C]
, Health Care [N]
, Chemicals and Drugs [D]
, Psychiatry and Psychology [F]
, Anatomy [A]
, Information Science [L]
, Geographicals [Z]
, Organisms [B]
, Disciplines and Occupations [H]
, Named Groups [M]
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_multi_label_classification_of_pubmed_articles","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = BertForSequenceClassification.pretrained("bert_classifier_multi_label_classification_of_pubmed_articles","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.pubmed.").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_multi_label_classification_of_pubmed_articles |
Compatibility: | Spark NLP 5.1.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 405.9 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
References
- https://huggingface.co/owaiskha9654/Multi-Label-Classification-of-PubMed-Articles
- https://www.kaggle.com/datasets/owaiskhan9654/pubmed-multilabel-text-classification
- https://www.kaggle.com/code/owaiskhan9654/multi-label-classification-of-pubmed-articles
- https://www.kaggle.com/datasets/owaiskhan9654/pubmed-multilabel-text-classification
- https://arxiv.org/abs/1706.03762
- https://arxiv.org/abs/1810.04805
- https://github.com/google-research/bert
- https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html#torch.nn.BCEWithLogitsLoss