Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. BERT-Banking77
is a English model originally trained by philschmid
.
Predicted Entities
get_disposable_virtual_card
, declined_card_payment
, fiat_currency_support
, apple_pay_or_google_pay
, atm_support
, failed_transfer
, Refund_not_showing_up
, wrong_amount_of_cash_received
, getting_virtual_card
, verify_my_identity
, top_up_by_cash_or_cheque
, top_up_by_bank_transfer_charge
, balance_not_updated_after_cheque_or_cash_deposit
, visa_or_mastercard
, cash_withdrawal_charge
, pending_top_up
, country_support
, contactless_not_working
, transfer_not_received_by_recipient
, card_arrival
, top_up_failed
, balance_not_updated_after_bank_transfer
, topping_up_by_card
, card_acceptance
, order_physical_card
, pending_card_payment
, exchange_charge
, extra_charge_on_statement
, verify_top_up
, card_swallowed
, card_delivery_estimate
, top_up_by_card_charge
, exchange_rate
, activate_my_card
, card_payment_wrong_exchange_rate
, passcode_forgotten
, supported_cards_and_currencies
, why_verify_identity
, verify_source_of_funds
, card_payment_fee_charged
, change_pin
, top_up_reverted
, virtual_card_not_working
, declined_cash_withdrawal
, reverted_card_payment?
, transfer_fee_charged
, card_payment_not_recognised
, card_not_working
, beneficiary_not_allowed
, exchange_via_app
, automatic_top_up
, lost_or_stolen_card
, card_about_to_expire
, pin_blocked
, card_linking
, direct_debit_payment_not_recognised
, compromised_card
, request_refund
, wrong_exchange_rate_for_cash_withdrawal
, transfer_into_account
, declined_transfer
, cash_withdrawal_not_recognised
, get_physical_card
, edit_personal_details
, unable_to_verify_identity
, terminate_account
, transfer_timing
, top_up_limits
, pending_cash_withdrawal
, disposable_card_limits
, getting_spare_card
, lost_or_stolen_phone
, pending_transfer
, receiving_money
, cancel_transfer
, age_limit
, transaction_charged_twice
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_banking77","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_banking77","en")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_sequence_classifier_banking77 |
Compatibility: | Spark NLP 5.1.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 409.6 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
References
- https://huggingface.co/philschmid/BERT-Banking77
- https://paperswithcode.com/sota?task=Text+Classification&dataset=BANKING77