Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. industry-classification-api
is a English model originally trained by sampathkethineedi
.
Predicted Entities
Electronic Equipment & Instruments
, Commodity Chemicals
, Leisure Products
, Health Care Services
, Regional Banks
, Life Sciences Tools & Services
, Industrial Machinery
, Gold
, Investment Banking & Brokerage
, Restaurants
, Packaged Foods & Meats
, IT Consulting & Other Services
, Oil & Gas Equipment & Services
, Health Care Supplies
, Aerospace & Defense
, Human Resource & Employment Services
, Application Software
, Property & Casualty Insurance
, Movies & Entertainment
, Oil & Gas Storage & Transportation
, Apparel Retail
, Electrical Components & Equipment
, Consumer Finance
, Construction Machinery & Heavy Trucks
, Advertising
, Casinos & Gaming
, Construction & Engineering
, Systems Software
, Auto Parts & Equipment
, Data Processing & Outsourced Services
, Specialty Stores
, Research & Consulting Services
, Oil & Gas Exploration & Production
, Pharmaceuticals
, Interactive Media & Services
, Homebuilding
, Building Products
, Personal Products
, Electric Utilities
, Communications Equipment
, Trading Companies & Distributors
, Health Care Equipment
, Semiconductors
, Internet & Direct Marketing Retail
, Environmental & Facilities Services
, Thrifts & Mortgage Finance
, Diversified Metals & Mining
, Oil & Gas Refining & Marketing
, Steel
, Diversified Support Services
, Technology Distributors
, Health Care Facilities
, Health Care Technology
, Biotechnology
, Integrated Telecommunication Services
, Real Estate Operating Companies
, Internet Services & Infrastructure
, Asset Management & Custody Banks
, Specialty Chemicals
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_industry_classification_api","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_industry_classification_api","en")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_sequence_classifier_industry_classification_api |
Compatibility: | Spark NLP 5.1.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 409.6 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
References
- https://huggingface.co/sampathkethineedi/industry-classification-api