Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert_sentence_classifier
is a English model originally trained by juancavallotti
.
Predicted Entities
HOME & LIVING
, ARTS & CULTURE
, ENVIRONMENT
, MEDIA
, STYLE & BEAUTY
, FOOD & DRINK
, GREEN
, TRAVEL
, BUSINESS
, POLITICS
, SCIENCE
, WORLD NEWS
, WELLNESS
, TECH
, COMEDY
, SPORTS
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_sentence","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_sentence","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_juancavallotti").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_sentence |
Compatibility: | Spark NLP 5.1.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 1.2 GB |
Case sensitive: | true |
Max sentence length: | 256 |
References
References
- https://huggingface.co/juancavallotti/bert_sentence_classifier