Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. autotrain-Arabic_Poetry_by_Subject-920730227 is a Arabic model originally trained by zenkri.
Predicted Entities
اعتذار, مدح, صبر, سياسية, وطنيه, رثاء, عامه, ابتهال, قصيره, رومنسيه, حزينه, عتاب, رحمة, الاناشيد, المعلقات, فراق, هجاء, نصيحة, جود, حكمة, شوق, دينية, عدل, غزل, ذم
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_autotrain_arabic_poetry_by_subject_920730227","ar") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_autotrain_arabic_poetry_by_subject_920730227","ar")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_sequence_classifier_autotrain_arabic_poetry_by_subject_920730227 |
| Compatibility: | Spark NLP 5.1.4+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | ar |
| Size: | 414.3 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
References
- https://huggingface.co/zenkri/autotrain-Arabic_Poetry_by_Subject-920730227