English BertForSequenceClassification Cased model (from ndavid)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. autotrain-trec-fine-bert-739422530 is a English model originally trained by ndavid.

Predicted Entities

veh, exp, techmeth, religion, currency, reason, event, letter, country, manner, city, other, abb, plant, title, period, temp, lang, weight, mount, state, desc, code, money, cremat, gr, volsize, dist, dismed, instru, sport, count, food, perc, product, termeq, ord, word, def, color, speed, date, substance, symbol, ind, body, animal

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_autotrain_trec_fine_739422530","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_autotrain_trec_fine_739422530","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_sequence_classifier_autotrain_trec_fine_739422530
Compatibility: Spark NLP 5.1.4+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: en
Size: 409.5 MB
Case sensitive: true
Max sentence length: 128

References

References

  • https://huggingface.co/ndavid/autotrain-trec-fine-bert-739422530