Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. autotrain-trec-fine-bert-739422530
is a English model originally trained by ndavid
.
Predicted Entities
veh
, exp
, techmeth
, religion
, currency
, reason
, event
, letter
, country
, manner
, city
, other
, abb
, plant
, title
, period
, temp
, lang
, weight
, mount
, state
, desc
, code
, money
, cremat
, gr
, volsize
, dist
, dismed
, instru
, sport
, count
, food
, perc
, product
, termeq
, ord
, word
, def
, color
, speed
, date
, substance
, symbol
, ind
, body
, animal
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_autotrain_trec_fine_739422530","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_autotrain_trec_fine_739422530","en")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_sequence_classifier_autotrain_trec_fine_739422530 |
Compatibility: | Spark NLP 5.1.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 409.5 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
References
- https://huggingface.co/ndavid/autotrain-trec-fine-bert-739422530