Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. roberta-base-finetuned-jd-full-chinese is a Chinese model originally trained by uer.
Predicted Entities
star 4, star 5, star 1, star 2, star 3
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_roberta_base_finetuned_jd_full_chinese","zh") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_roberta_base_finetuned_jd_full_chinese","zh")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_sequence_classifier_roberta_base_finetuned_jd_full_chinese | 
| Compatibility: | Spark NLP 5.1.4+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [ner] | 
| Language: | zh | 
| Size: | 383.0 MB | 
| Case sensitive: | true | 
| Max sentence length: | 128 | 
References
References
- https://huggingface.co/uer/roberta-base-finetuned-jd-full-chinese
- https://arxiv.org/abs/1909.05658
- https://github.com/dbiir/UER-py/wiki/Modelzoo
- https://github.com/zhangxiangxiao/glyph
- https://arxiv.org/abs/1708.02657
- https://github.com/dbiir/UER-py/
- https://cloud.tencent.com/