Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.bert_ner_bert_base_cased_semitic_languages
is a English model originally trained by QCRI.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_bert_base_cased_semitic_languages","en") \
.setInputCols(["documents","token"]) \
.setOutputCol("ner")
pipeline = Pipeline().setStages([documentAssembler, tokenClassifier])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("embeddings")
val tokenClassifier = BertForTokenClassification
.pretrained("bert_ner_bert_base_cased_semitic_languages", "en")
.setInputCols(Array("documents","token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenClassifier))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | bert_ner_bert_base_cased_semitic_languages |
Compatibility: | Spark NLP 5.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [documents, token] |
Output Labels: | [ner] |
Language: | en |
Size: | 403.8 MB |
References
https://huggingface.co/QCRI/bert-base-cased-sem