Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.bert_ner_hebert_ner is a Hebrew model originally trained by avichr.
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("documents")
    
    
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_hebert_ner","he") \
            .setInputCols(["documents","token"]) \
            .setOutputCol("ner")
pipeline = Pipeline().setStages([documentAssembler, tokenClassifier])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text") 
    .setOutputCol("embeddings")
    
val tokenClassifier = BertForTokenClassification  
    .pretrained("bert_ner_hebert_ner", "he")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("ner") 
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenClassifier))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
| Model Name: | bert_ner_hebert_ner | 
| Compatibility: | Spark NLP 5.2.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [documents, token] | 
| Output Labels: | [ner] | 
| Language: | he | 
| Size: | 408.1 MB | 
References
https://huggingface.co/avichr/heBERT_NER