Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. meddocan-beto-ner is a Spanish model originally trained by rjuez00.
Predicted Entities
CALLE, NUMERO_FAX, FECHAS, CENTRO_SALUD, INSTITUCION, PROFESION, ID_EMPLEO_PERSONAL_SANITARIO, SEXO_SUJETO_ASISTENCIA, PAIS, FAMILIARES_SUJETO_ASISTENCIA, EDAD_SUJETO_ASISTENCIA, CORREO_ELECTRONICO, NUMERO_TELEFONO, HOSPITAL, ID_CONTACTO_ASISTENCIAL, ID_ASEGURAMIENTO, OTROS_SUJETO_ASISTENCIA, NOMBRE_SUJETO_ASISTENCIA, ID_SUJETO_ASISTENCIA, NOMBRE_PERSONAL_SANITARIO, ID_TITULACION_PERSONAL_SANITARIO, TERRITORIO
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_meddocan_beto_ner","es") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["Amo Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_meddocan_beto_ner","es")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("Amo Spark NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.ner.beto_bert").predict("""Amo Spark NLP""")
Model Information
| Model Name: | bert_ner_meddocan_beto_ner |
| Compatibility: | Spark NLP 5.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | es |
| Size: | 409.6 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
References
- https://huggingface.co/rjuez00/meddocan-beto-ner