Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. ner_nerd_fine is a English model originally trained by ramybaly.
Predicted Entities
MISC_educationaldegree, ORG_other, BUILDING_restaurant, MISC_law, LOC_mountain, ART_other, MISC_medical, LOC_other, PER_athlete, PRODUCT_food, MISC_god, BUILDING_theater, LOC_GPE, ORG_media/newspaper, PRODUCT_other, ORG_government/governmentagency, PRODUCT_airplane, PRODUCT_software, BUILDING_other, ART_film, LOC_park, LOC_road/railway/highway/transit, PER_soldier, PRODUCT_weapon, EVENT_other, ORG_sportsleague, PRODUCT_train, PER_other, PER_politician, EVENT_election, ORG_company, PER_director, BUILDING_sportsfacility, ART_painting, BUILDING_airport, ART_music, LOC_island, ORG_politicalparty, MISC_award, PRODUCT_ship, BUILDING_hospital, ORG_sportsteam, MISC_livingthing, MISC_astronomything, BUILDING_hotel, MISC_language, EVENT_attack/battle/war/militaryconflict, LOC_bodiesofwater, EVENT_sportsevent, ORG_religion, PRODUCT_car, BUILDING_library, ORG_education, MISC_disease, MISC_currency, PER_scholar, EVENT_disaster, PRODUCT_game, PER_artist/author, ART_writtenart, EVENT_protest, MISC_chemicalthing, PER_actor, MISC_biologything, ART_broadcastprogram, ORG_showorganization
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer() \
.setInputCols("sentence") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_ner_ner_nerd_fine","en") \
.setInputCols(["sentence", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_ner_ner_nerd_fine","en")
.setInputCols(Array("sentence", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.bert.nerd_fine.by_ramybaly").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_ner_ner_nerd_fine |
| Compatibility: | Spark NLP 5.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | en |
| Size: | 407.4 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
References
- https://huggingface.co/ramybaly/ner_nerd_fine