Description
Pretrained BertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. berturk-uncased-keyword-extractor is a Turkish model originally trained by yanekyuk.
Predicted Entities
KEY
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_berturk_uncased_keyword_extractor","tr") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_berturk_uncased_keyword_extractor","tr")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_token_classifier_berturk_uncased_keyword_extractor | 
| Compatibility: | Spark NLP 5.2.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [ner] | 
| Language: | tr | 
| Size: | 412.5 MB | 
| Case sensitive: | true | 
| Max sentence length: | 128 | 
References
References
- https://huggingface.co/yanekyuk/berturk-uncased-keyword-extractor