Finnish BertForQuestionAnswering Base Cased model (from ilmariky)

Description

Pretrained BertForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-finnish-cased-squad1-fi is a Finnish model originally trained by ilmariky.

Predicted Entities

Download Copy S3 URI

How to use

Document_Assembler = MultiDocumentAssembler()\
     .setInputCols(["question", "context"])\
     .setOutputCols(["document_question", "document_context"])

Question_Answering = BertForQuestionAnswering.pretrained("bert_qa_base_nnish_cased_squad1","fi")\
     .setInputCols(["document_question", "document_context"])\
     .setOutputCol("answer")\
     .setCaseSensitive(True)
    
pipeline = Pipeline(stages=[Document_Assembler, Question_Answering])

data = spark.createDataFrame([["What's my name?","My name is Clara and I live in Berkeley."]]).toDF("question", "context")

result = pipeline.fit(data).transform(data)
val Document_Assembler = new MultiDocumentAssembler()
     .setInputCols(Array("question", "context"))
     .setOutputCols(Array("document_question", "document_context"))

val Question_Answering = BertForQuestionAnswering.pretrained("bert_qa_base_nnish_cased_squad1","fi")
     .setInputCols(Array("document_question", "document_context"))
     .setOutputCol("answer")
     .setCaseSensitive(true)
    
val pipeline = new Pipeline().setStages(Array(Document_Assembler, Question_Answering))

val data = Seq("What's my name?","My name is Clara and I live in Berkeley.").toDS.toDF("question", "context")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_qa_base_nnish_cased_squad1
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Official
Input Labels: [document_question, document_context]
Output Labels: [answer]
Language: fi
Size: 464.7 MB
Case sensitive: true
Max sentence length: 512

References

References

  • https://huggingface.co/ilmariky/bert-base-finnish-cased-squad1-fi
  • https://github.com/google-research-datasets/tydiqa
  • https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/