Korean BertForQuestionAnswering Cased model (from arogyaGurkha)

Description

Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. kobert-finetuned-squad_kor_v1 is a Korean model originally trained by arogyaGurkha.

Predicted Entities

Download Copy S3 URI

How to use

documentAssembler = MultiDocumentAssembler() \
    .setInputCols(["question", "context"]) \
    .setOutputCols(["document_question", "document_context"])

spanClassifier = BertForQuestionAnswering.pretrained("bert_qa_kobert_finetuned_squad_kor_v1","ko") \
    .setInputCols(["document_question", "document_context"]) \
    .setOutputCol("answer")\
    .setCaseSensitive(True)
    
pipeline = Pipeline(stages=[documentAssembler, spanClassifier])

data = spark.createDataFrame([["내 이름은 무엇입니까?", "제 이름은 클라라이고 저는 버클리에 살고 있습니다."]]).toDF("question", "context")

result = pipeline.fit(data).transform(data)
val documentAssembler = new MultiDocumentAssembler() 
      .setInputCols(Array("question", "context")) 
      .setOutputCols(Array("document_question", "document_context"))
 
val spanClassifer = BertForQuestionAnswering.pretrained("bert_qa_kobert_finetuned_squad_kor_v1","ko") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("answer")
    .setCaseSensitive(true)

val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))

val data = Seq("내 이름은 무엇입니까?", "제 이름은 클라라이고 저는 버클리에 살고 있습니다.").toDF("question", "context")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_qa_kobert_finetuned_squad_kor_v1
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Official
Input Labels: [document_question, document_context]
Output Labels: [answer]
Language: ko
Size: 342.9 MB
Case sensitive: true
Max sentence length: 512

References

References

  • https://huggingface.co/arogyaGurkha/kobert-finetuned-squad_kor_v1