Multilingual finetuned_bert_base_multilingual_cased_doerig BertForQuestionAnswering from doerig

Description

Pretrained BertForQuestionAnswering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.finetuned_bert_base_multilingual_cased_doerig is a Multilingual model originally trained by doerig.

Download Copy S3 URI

How to use



document_assembler = MultiDocumentAssembler() \
    .setInputCol(["question", "context"]) \
    .setOutputCol(["document_question", "document_context"])
    
    
spanClassifier = BertForQuestionAnswering.pretrained("finetuned_bert_base_multilingual_cased_doerig","xx") \
            .setInputCols(["document_question","document_context"]) \
            .setOutputCol("answer")

pipeline = Pipeline().setStages([document_assembler, spanClassifier])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)



val document_assembler = new MultiDocumentAssembler()
    .setInputCol(Array("question", "context")) 
    .setOutputCol(Array("document_question", "document_context"))
    
val spanClassifier = BertForQuestionAnswering  
    .pretrained("finetuned_bert_base_multilingual_cased_doerig", "xx")
    .setInputCols(Array("document_question","document_context")) 
    .setOutputCol("answer") 

val pipeline = new Pipeline().setStages(Array(document_assembler, spanClassifier))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)


Model Information

Model Name: finetuned_bert_base_multilingual_cased_doerig
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Official
Input Labels: [document_question, document_context]
Output Labels: [answer]
Language: xx
Size: 665.1 MB

References

https://huggingface.co/doerig/finetuned_bert-base-multilingual-cased