Description
Pretrained DistilBertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.distilbert_base_multilingual_cased_ner_demo_amarsanaa1525
is a Multilingual model originally trained by Amarsanaa1525.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("documents")
tokenClassifier = DistilBertForTokenClassification.pretrained("distilbert_base_multilingual_cased_ner_demo_amarsanaa1525","xx") \
.setInputCols(["documents","token"]) \
.setOutputCol("ner")
pipeline = Pipeline().setStages([documentAssembler, tokenClassifier])
pipelineModel = pipeline.fit(data)
pipelineDF = pipelineModel.transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("embeddings")
val tokenClassifier = DistilBertForTokenClassification
.pretrained("distilbert_base_multilingual_cased_ner_demo_amarsanaa1525", "xx")
.setInputCols(Array("documents","token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenClassifier))
val pipelineModel = pipeline.fit(data)
val pipelineDF = pipelineModel.transform(data)
Model Information
Model Name: | distilbert_base_multilingual_cased_ner_demo_amarsanaa1525 |
Compatibility: | Spark NLP 5.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [documents, token] |
Output Labels: | [ner] |
Language: | xx |
Size: | 505.4 MB |
References
https://huggingface.co/Amarsanaa1525/distilbert-base-multilingual-cased-ner-demo