Multilingual test_distilbert_base_multilingual_cased DistilBertForTokenClassification from Erdenebold

Description

Pretrained DistilBertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.test_distilbert_base_multilingual_cased is a Multilingual model originally trained by Erdenebold.

Download Copy S3 URI

How to use



documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("documents")
    
    
tokenClassifier = DistilBertForTokenClassification.pretrained("test_distilbert_base_multilingual_cased","xx") \
            .setInputCols(["documents","token"]) \
            .setOutputCol("ner")

pipeline = Pipeline().setStages([documentAssembler, tokenClassifier])

pipelineModel = pipeline.fit(data)

pipelineDF = pipelineModel.transform(data)



val documentAssembler = new DocumentAssembler()
    .setInputCol("text") 
    .setOutputCol("embeddings")
    
val tokenClassifier = DistilBertForTokenClassification  
    .pretrained("test_distilbert_base_multilingual_cased", "xx")
    .setInputCols(Array("documents","token")) 
    .setOutputCol("ner") 

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenClassifier))

val pipelineModel = pipeline.fit(data)

val pipelineDF = pipelineModel.transform(data)


Model Information

Model Name: test_distilbert_base_multilingual_cased
Compatibility: Spark NLP 5.2.0+
License: Open Source
Edition: Official
Input Labels: [documents, token]
Output Labels: [ner]
Language: xx
Size: 505.4 MB

References

https://huggingface.co/Erdenebold/test-distilbert-base-multilingual-cased