Description
Pretrained Question Answering model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. distilbert-base-cased-distilled-squad
is a English model originally trained by Hugging Face.
Predicted Entities
How to use
documentAssembler = MultiDocumentAssembler() \
.setInputCols(["question", "context"]) \
.setOutputCols(["document_question", "document_context"])
spanClassifier = DistilBertForQuestionAnswering.pretrained("distilbert_base_cased_qa_squad2","en") \
.setInputCols(["document_question", "document_context"]) \
.setOutputCol("answer")\
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, spanClassifier])
data = spark.createDataFrame([["What is my name?", "My name is Clara and I live in Berkeley."]]).toDF("question", "context")
result = pipeline.fit(data).transform(data)
val documentAssembler = new MultiDocumentAssembler()
.setInputCols(Array("question", "context"))
.setOutputCols(Array("document_question", "document_context"))
val spanClassifer = DistilBertForQuestionAnswering.pretrained("distilbert_base_cased_qa_squad2","en")
.setInputCols(Array("document", "token"))
.setOutputCol("answer")
.setCaseSensitive(true)
val pipeline = new Pipeline().setStages(Array(documentAssembler, spanClassifier))
val data = Seq("What is my name?", "My name is Clara and I live in Berkeley.").toDF("question", "context")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.answer_question.squadv2.distil_bert.base_cased").predict("""What is my name?|||"My name is Clara and I live in Berkeley.""")
Model Information
Model Name: | distilbert_base_cased_qa_squad2 |
Compatibility: | Spark NLP 5.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document_question, document_context] |
Output Labels: | [answer] |
Language: | en |
Size: | 243.8 MB |
Case sensitive: | true |
Max sentence length: | 512 |
References
References
https://huggingface.co/distilbert-base-cased-distilled-squad